2 電源 HEECS 単相インバータによる 高速潮流制御のシミュレーションでの実現

那須 祥生^{*} 味口 泰彦 小原 秀嶺 河村 篤男 (横浜国立大学)

Realization of Quick Power Flow Control Using 2 Battery HEECS Inverter on Simulation Yoshiki Nasu^{*}, Yasuhiko Miguichi,

Hidemine Obara, Atsuo Kawamura, (Yokohama National University)

We confirmed that two battery high efficiency energy conversion system inverter, which has efficiency of 99.71% at 2.2 kW output, can be used as grid-connected inverter and control power flow quickly by simulation. This paper shows simulation results of switching between powering and regenerating with a few kW output.

キーワード:パワーエレクトロニクス,高効率,高速潮流制御,系統連系インバータ (Keywords, Power electronics, High efficiency, Quick power flow control, Grid-connected inverter)

1. はじめに

我々は、超高効率チョッパとLCフィルタ、折り返し回路 を組み合わせた 2 電源 HEECS 単相インバータ (High Efficiency Energy Conversion System)を研究しており、 2.2 kW の負荷に対して 99.7 %以上の変換効率を計測して いることを既に報告している⁽¹⁾。本稿では、2 電源 HEECS 単相インバータを系統連系インバータとして使用し、力行 状態⇔回生状態を瞬時に変化させる高速潮流制御が可能で あることをシミュレーション上で確認したため、これを報 告する。

2. 2 電源 HEECS 単相インバータの動作

図1に2電源 HEECS 単相インバータの回路図を示す。 2電源 HEECS 単相インバータは $E_1 \ge E_2$ の2つの電源を入 力に持つ高効率なインバータであり、チョッパ部と折り返 し回路で構成される。図2のようにチョッパ部で全波整流 波形を作り出し、折り返し回路で正弦波を出力する⁽²⁾。

図 1 2 電源 HEECS 単相インバータ

Fig.1 2 battery HEECS single-phase inverter

図2 出力電圧の波形例

3. 系統連系インバータとしての利用

2 電源 HEECS 単相インバータを系統連系インバータと して利用するには、図 3 のようにインバータ出力と系統と の間に連系リアクトルを直列に接続する。インバータの出 力電圧の位相が系統に対して進みであれば力行となり系統 に有効電力を供給する。出力電圧の位相が系統に対して遅 れであれば回生となり系統から有効電力が供給され,直流 電源に電力を回生する。

4. 電圧指令, 電流指令の導出

2 電源 HEECS 単相インバータの折り返し回路における スイッチングは、スイッチング損を最小化するために、電 流電圧ともに0 であるときに行うことが望ましい。これは 力率が1 であることが望ましいことと同義である。そのた め、図4に示される系統連系回路モデルにおいて、インバ ータの出力電圧と出力電流の位相差を0にするには、図5 に示されるように連系リアクトルの電圧ベクトルとインバ ータ出力の電圧ベクトルが直交すればよい。リアクトルの 電流ベクトルはリアクトルの電圧ベクトルと直行するの で、インバータの出力電圧と出力電流の位相差が0とな る。

インバータの出力電圧と系統電圧との位相差がαであ り、それぞれの出力電圧が次式で表されるとする。

$[V_{inv}]$	$\sqrt{2}V_1 \sin(\omega t + \alpha)$	(1)
$\begin{bmatrix} V_{\rm s} \end{bmatrix}^{-}$	$\sqrt{2}V_2$ sin ωt	(1)

図5のように、インバータ出力電圧と出力電流の位相差が0であるとき、インバータ出力電圧は次式の関係を満たす。

$ \dot{V}_{\rm inv} ^2 + \dot{V}_L ^2 = \dot{V}_S ^2$ (2))
---	---

 $|\dot{V}_L| = |\dot{V}_S|\sin\alpha$(3) 通常,系統連系時の電圧位相差αは数度程度と小さい値 であるため, sina = αと近似できる。式(2)からインバー タの出力電圧実効値V₁について,次式が成り立つ。

 $V_1 = \sqrt{1 - \alpha^2} V_2$(4) ゆえに,インバータ側の力率を 1 にするには,インバータ 出力電圧を系統の電圧に対して $\sqrt{1 - \alpha^2}$ 倍とすればよい。

このとき、インバータ側から系統に流す電力をPとす ると次式が成立する。

 $P = \frac{\alpha V_2}{\omega L} V_1 = \frac{\alpha \sqrt{1 - \alpha^2}}{\omega L} V_2^2 \dots$ (5)

式(5)をαについて解くと次式になる。

$\alpha = \pm \sqrt{\frac{1 - \sqrt{1 - 4cP^2}}{2}}$	(6)
ここで	
$c=\frac{\omega^2 L^2}{V_2^4},$	

図4 系統連系回路モデル Fig.4 Circuit model for grid-connected inverter

図 5 HEECS インバータを用いた場合の電圧ベクトル Fig.5 Voltage vector of grid-connected inverter

ゆえに、有効電力指令が**P**であるときの連系リアクトル電流*I*_Lは次式で表される。

5. シミュレーション条件と制御則

本節では2電源 HEECS 単相インバータを系統連系イン バータとして利用したときのシミュレーション条件と制御 について記す。

シミュレーションソフトに Myway プラス株式会社が提 供する PSIM を使用した。2 電源 HEECS インバータを構 成する LC フィルタ(L_f, C_f)の素子の値は変換効率 99.7 %を 計測したときと同じものとしている。各種パラメータや素 子の配置は図 6,表1のとおりである。

制御則は HEECS インバータを系統連系インバータとし て利用する際の固有の電流制御⁽³⁾を利用している。式(7)と 測定電流との差から電圧指令を生成し、チョッパ部はデッ ドビート電圧制御により正弦波全波整流波形を生成する。 電流センサによる電力損失を0にするために、LCフィル タのインダクタ電流はオブザーバを利用して推定してい る。

図 6 シミュレーションにおける測定点 Fig.6 Measurement points on simulation.

表1 シミュレーション時の各種パラメータ Table 1 Simulation parameters

Table I Simulation parameters		
Parameters	Value	
E ₁	280 V	
E_2	$125~\mathrm{V}$	
$L_{ m f}$	2.43 mH	
С	8 µF	
L_{s1}, L_{s2}	2 mH	
Es	400 V _{p-p}	
System Frequency	$50~{ m Hz}$	
PWM Carrier Frequency	20 kHz	
Dead Time (chopper)	200 ns	
Dead Time (unfolding circuit)	500 ns	

6. 定常状態のシミュレーションとカ行⇔回生 の高速切替

本節では系統に対して1台のHEECSインバータを接続 した場合の力行,回生時の各定常状態の出力と,力行と回 生の状態を短時間で変化させたときの出力のシミュレーシ ョン結果を示す。

<6·1> カ行2 kW 時の出力

図7に有効電力指令を力行2kWとしたときのインバー タ出力電圧,出力電流,出力電力の波形を示す。なおイン バータは単相交流を出力するため,有効電力は基本波の2 倍で振動する。

<6·2> カ行2 kW→回生2 kW への切替

図8に有効電力指令を力行2kWから回生2kWへ2ms で変化させたときのインバータ出力電圧,出力電流,出力 電力の波形を示す。なお,シミュレーション波形は有効電 力出力が最大となる点で有効電力指令の切替を行ったもの を載せている。

〈6・3〉カ行→回生切替時間の変更

図 9 に有効電力指令を力行 2 kW から回生 2 kW への切 替時間*Δt* を 2 ms, 500 μs, 100 μs とした場合のインバータ 出力電力と有効電力指令の瞬時値の波形を示す。動作モー ドの変更開始タイミングは図 8 のものと同様である。

シミュレーション結果から,有効電力指令の切替時間が 短すぎると図9(c)のように電力波形のオーバーシュートが 確認される。本シミュレーション条件においては,力行→ 回生への指令値切替が1ms程度であればオーバーシュート の見られない電力波形が確認できると考えられる。

7. 2 台の HEECS インバータが系統につながっ ている場合のシミュレーション

本節では系統に対して2台のHEECSインバータが接続 されている状態での出力シミュレーション結果を示す。

〈7・1〉2台のHEECSインバータによる定常出力状態 図 11 に有効電力指令を一方は回生3kW,もう一方は力行 2kW としたときのインバータ出力電力波形と系統に流れ込 む電力波形を示す。

〈7・2〉一方のインバータの動作が変化した場合 図 12 に一方のインバータの動作を回生 3 kW で固定した 状態で,もう一方のインバータの動作を力行 2 kW から回 生 2 kW へ 2ms で変化させたときのそれぞれのインバータ 出力と系統に流れる電力を示す。

図 10 2 台の HEECS インバータの系統連系 Fig.10 Two grid-connected inverter with HEECS

 $P2: 2 \text{ kW powering} \rightarrow 2 \text{ kW regenerating in 2ms})$

図 11,12 から 2 台の HEECS インバータによる系統連系に おいても片方の動作が他方のインバータの動作に影響を与 えることなく動作モードの変更が行えていることが確認で きる。

8. まとめ

本稿では、高効率な2電源 HEECS 単相インバータを系 統連系インバータとして利用し、分散型電源による高効率 系統連系運転のシミュレーションを行った。まず、2電源 HEECS 単相インバータによる高効率運転に必要な電圧電 流指令の導出を行った。次に、2電源 HEECS 単相インバー タによる2kW 程度の力行回生動作の切替が数 ms 程度で可 能であることを系統に接続されたインバータが1 台の場合 と2 台の場合についてそれぞれシミュレーションにより確 認した。以上の結果から2電源 HEECS インバータを用い ることにより、複数の分散型電源による高効率系統連系運 転が可能であると考えられる。実機を用いた実証実験は別 途報告予定である。

謝辞:

本研究は科研費 17H06147 によってサポートされていま す。

文 献

- (1) A.Kawamura, S.Nakazaki, S.Ito, S. Nagai, H.Obara, "Over 99.7% Efficiency Two Battery HEECS Inverter at 2.2kW Output and Measurement Accuracy Based on Loss Breakdown", IEEJ Journal of Industry Applications (to be published on No.6, Vol.9, 2020)
- (2) S. Nakazaki, S. Ito, H. Obara, A. Kawamura, "Discussion on Loss Breakdown of 99.6%Efficiency Two Battery HEECS Inverter", EPE2019, (2019)
- (3) Y. Miguchi, Y. Nasu, H. Obara, A. Kawamura "Current Control of Very High Efficiency Single-phase Grid-Connected Inverter", SPC-20-128(2020年9月研究会発表予定)
- (4) Y. Tsuruta and A. Kawamura: "principle verification prototype chopper using SiC MOSFET Module developed for partial boost circuit system", in Proc. of IEEE Energy Conversion Congress and Exposition, Sept. (2015)
- (5) 森本雅之、「入門インバータ工学」、森北出版、2011
- (6) T. Miyazaki, H. Otake, Y. Nakakohara, M. Tsuruya, and K. Nakahara: "A fanless operating trans-linked interleaved 5 kW inverter using SiC MOSFETs to achieve 99% power conversion efficiency", IEEE Trans. Ind. Electron.(2018)
- (7) Yukinori Tsuruta, et al.: "Realization and highly precise measurement of 100kW HEECS chopper with 99.5% efficiency", IEEJ Journal of Industry Applications vol. 8 (2019)
- (8) A. Kawamura, S. Nagai, S. Nakazaki, S. Ito, and H.Obara:"A very high efficiency circuit topology for a few kW inverter based on partial power conversion principle ", in Proc. of IEEE Energy Conversion Congress and Expo, Sept. (2018)